• Users Online: 154
  • Print this page
  • Email this page


 
 Table of Contents  
CASE REPORT
Year : 2017  |  Volume : 1  |  Issue : 2  |  Page : 60-62

Acquired central hypoventilation: A relatively rare complication following coronary artery bypass grafting


1 Department of Critical Care Medicine, Global Hospitals, Mumbai, Maharashtra, India
2 Department of Radiology, Wockhardt Hospitals, South Mumbai, Maharashtra, India

Date of Web Publication7-Nov-2017

Correspondence Address:
Sonali Vadi
Global Hospitals, Mumbai, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/sccj.sccj_10_17

Get Permissions

  Abstract 

A posterior circulation stroke acquired Ondine's curse occurs following medullary infarction. Central alveolar hypoventilation, a sine qua non of this stroke, is characterized by unpredictable episodes of sleep apnea that is associated with a high mortality rate. Postcoronary artery bypass grafting, a 64-year-old male developed embolic medullary infarct leading to recurrent episodes of apnea. This was managed with tracheostomy and mechanical ventilation. Intensive respiratory monitoring is of the essence during the acute and subacute stages in these patients.

Keywords: Acquired central alveolar hypoventilation, medullary infarct, posterior circulation stroke


How to cite this article:
Vadi S, Paunipagar B. Acquired central hypoventilation: A relatively rare complication following coronary artery bypass grafting. Saudi Crit Care J 2017;1:60-2

How to cite this URL:
Vadi S, Paunipagar B. Acquired central hypoventilation: A relatively rare complication following coronary artery bypass grafting. Saudi Crit Care J [serial online] 2017 [cited 2017 Nov 18];1:60-2. Available from: http://www.sccj-sa.org/text.asp?2017/1/2/60/217804


  Introduction Top


Acquired Ondine's curse also known as acquired central alveolar hypoventilation syndrome occurs following the involvement of ventrolateral descending medullocervical pathway. Subsequently, automatic breathing is affected leading to apnea during sleep. Below is the description of a scenario that occurred as a consequence of embolic unilateral medullary infarction.


  Case Report Top


A 64-year-old male was transferred to our facility about 4 days postcoronary artery bypass grafting surgery. There was a transient atrial fibrillation encountered in the postoperative phase. This was managed with parenteral Amiodarone. Later, he sustained a cardiac arrest requiring cardiopulmonary resuscitation. A computed tomography (CT) brain (noncontrast) done at the outside hospital revealed a left posterior cerebral artery territory infarct and left cerebellar infarct. A subsequent magnetic resonance imaging (MRI) brain (noncontrast) [Figure 1] revealed a large recent onset infarct with T2-weighted hyperintensity [Figure 2]a and [Figure 2]b. There was an acute thrombotic occlusion of the left posterior inferior cerebellar artery [Figure 3]a,[Figure 3]b,[Figure 3]c,[Figure 3]d. An emergent posterior fossa decompression surgery was performed [Figure 4] and he was kept intubated and ventilated for 48 h postdecompression. Extraventricular drainage was reinserted the same evening. On the third day following neurosurgery, an extubation was attempted. Within 10 min of extubation, he became drowsy with shallow breathing, bradypneic to apneic, bradycardic, and hypotensive. His airway was secured immediately. An hour later, he regained consciousness, obeyed verbal requests, and did not demonstrate any focal neurological deficits. Vasomotor instability had resolved the following reinstitution of mechanical ventilation. Electrocardiogram and transthoracic echocardiography did not reveal any fresh changes. Extubation was attempted again and within 30 min post-extubation; the patient again had an episode of apnea with tachycardia. Airway was promptly secured. His blood pressure was maintained. A high-resolution CT of the chest was performed. There was a suspicion of a pseudomembrane [Figure 5]a and [Figure 5]b noted within the trachea and was suspected to be the cause for the repeated apneic episodes. To confirm, the patient underwent flexible bronchoscopy. The same revealed edema of the vocal cords associated with flimsy membrane. This episode was followed by aspiration pneumonia [Figure 6]. A tracheostomy was performed, and he was weaned off the ventilator within 48 h. Clinically, there was no focal neurological deficit. 72 h later, at around 0130 h, he again had the episode of apnea and had to be reventilated. A follow-up MRI brain [Figure 7]a,[Figure 7]b,[Figure 7]c revealed new infarcts in other portions of the cerebral hemispheres indicating cardioembolism as the source of infarcts in view their size as well as their nonterritorial location. Meanwhile, he developed multiorgan dysfunction requiring vasoactives, and renal replacement therapy but succumbed. Infarcts of the respiratory center of medulla oblongata with resultant recurrent apneic episodes had resulted in his respiratory failure.
Figure 1: Diffusion-weighted magnetic resonance imaging sequence in axial plane reveals a large area of diffusion restriction in the left half of the medulla and the left cerebellar hemisphere

Click here to view
Figure 2: (a) T2-weighted magnetic resonance imaging sequence in axial plane reveals corresponding T2 hyperintensity suggesting subacute nature of the infarct as shown in Figure 1. (b) Fluid-attenuated inversion recovery-weighted magnetic resonance imaging sequence in sagittal plane reveals the medullary and the left cerebellar infarction with the tonsilar herniation associated with obstructive hydrocephalus in the proximal ventricular system

Click here to view
Figure 3: (a) Susceptibility-weighted sequence of magnetic resonance imaging in axial plane, reveals an obvious thrombus in the distal left vertebral artery. (b) Three-dimensional time of flight sequence of magnetic resonance imaging in axial plane reveals thrombotic occlusion of the left vertebral artery. (c) Three-dimensional time of flight minimum intensity projection of magnetic resonance imaging in coronal reformat reveals occluded left vertebral artery. (d) Minimum intensity projection coronal reformat of the three-dimensional time of flight reveals a long length of occluded left vertebral artery

Click here to view
Figure 4: Axial noncontrast computed tomography performed after two days, post decompression occipital craniotomy reveals combination of postoperative changes and infarcted brain parenchyma bulging out of the craniotomy defect

Click here to view
Figure 5: (a) Axial noncontrast computed tomography, in lung window reveals, a floating pseudomembrane along the infraglottic region from the posterior aspect compressed posteriorly by the endotracheal bulb. (b) Axial noncontrast computed tomography image at the level of the infraglottic neck with thin membranous mucosal shelf corresponding to the previous image in Figure 5a

Click here to view
Figure 6: Axial noncontrast computed tomography image of the thorax, lung window, reveals bibasal-dependent densities representing possibility of aspiration-induced chemical pneumonitis

Click here to view
Figure 7: (a) Diffusion-weighted magnetic resonance imaging axial plane performed after almost 12 days after the first magnetic resonance imaging reveals smaller infarcts in the other cerebral hemispheres, suggesting cardioembolic type infarcts in view of their size and nonterritorial pattern. (b) Diffusion-weighted magnetic resonance imaging axial plane performed after almost 12 days after the first magnetic resonance imaging reveals smaller infarcts in the other cerebral hemispheres, suggesting cardioembolic type infarcts in view of their size and nonterritorial pattern. (c) Diffusion-weighted magnetic resonance imaging axial plane performed after almost 12 days after the first magnetic resonance imaging reveals smaller infarcts in the other cerebral hemispheres, suggesting cardioembolic type infarcts in view of their size and nonterritorial pattern

Click here to view



  Discussion Top


In the case under discussion, first episode of hypoventilation associated with bradycardia was believed to be secondary to a cardiac cause. However, electrocardiogram and transthoracic echocardiography did not reveal any abnormality. The subsequent episode having occurred also within half-hour of extubation akin to the first one, raised a suspicion for pathology in the airways. Suspecting a pseudomembrane on CT scan of airways, a flexible bronchoscopy was performed. Apart from edema, there was no other cause for obstructive pathology. The third hypoventilation episode having occurred in his sleep inspite of a secure airway in place coupled with the MRI findings of lateral medullary infarct alluded central alveolar hypoventilation.

Compromise of the vertebrobasilar circulation as a result of an ischemic or embolic event after the surgery had led to lateral medullary infarct. Ventrolateral descending medullocervical pathways support automatic breathing.[1] Any lesions involving these pathways lead to central alveolar hypoventilation or Ondine's curse. Unilateral and not mandatorily bilateral infarction of the lateral medullary tegmentum are associated with this clinical manifestation.[2],[3] Clinically, patients present with sleep apnea leading to alveolar hypoventilation. They may also exhibit derangements in cardiovagal and sympathetic vasomotor control. It is associated with a high mortality in view of the unpredictable nature of these sleep apnea episodes.

Treatment options available include medications such as acetazolamide, medroxyprogesterone, etc., that would stimulate the respiratory center by inducing metabolic acidosis,[4] bilevel positive airway pressure ventilation, and the use of diaphragmatic pacing.[5],[6] Diaphragmatic pacing circumvents the need for continuous mechanical ventilation adding to the quality of life.


  Conclusion Top


This case report highlights a rare neurologic complication following cardiac bypass grafting, medullary infarct with resultant central alveolar hypoventilation. The capricious nature of its clinical presentation, progress, as well as outcomes of this posterior circulation stroke should encourage the clinicians to be wary when encountered with this neurologic condition in terms of prompt airway management and supportive mechanical ventilation as a life-saving measure.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Ropper AH, Samuels MA, Klein JP, editors. Disorders of the Autonomic Nervous System, Respiration, and Swallowing. In: Adams and Victor's Principles of Neurology. 10th ed. New York: McGraw-Hill Education; 2014. p.530-62.  Back to cited text no. 1
    
2.
Bogousslavsky J, Khurana R, Deruaz JP, Hornung JP, Regli F, Janzer R, et al. Respiratory failure and unilateral caudal brainstem infarction. Ann Neurol 1990;28:668-73.  Back to cited text no. 2
    
3.
Levin BE, Margolis G. Acute failure of automatic respirations secondary to a unilateral brainstem infarct. Ann Neurol 1977;1:583-6.  Back to cited text no. 3
    
4.
Bullemer F, Heindl S, Karg O. “Ondine's curse” in adults. Pneumologie 1999;53 Suppl 2:S91-2.  Back to cited text no. 4
    
5.
Glenn WW, Phelps ML, Elefteriades JA, Dentz B, Hogan JF. Twenty years of experience in phrenic nerve stimulation to pace the diaphragm. Pacing Clin Electrophysiol 1986;9(6 Pt 1):780-4.  Back to cited text no. 5
    
6.
Ali A, Flageole H. Diaphragmatic pacing for the treatment of congenital central alveolar hypoventilation syndrome. J Pediatr Surg 2008;43:792-6.  Back to cited text no. 6
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Case Report
Discussion
Conclusion
References
Article Figures

 Article Access Statistics
    Viewed33    
    Printed2    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]