• Users Online: 123
  • Print this page
  • Email this page
Year : 2017  |  Volume : 1  |  Issue : 2  |  Page : 55-59

Determinants of multidrug-resistant Acinetobacter sepsis in critically ill patients: A comparative study

1 Department of ICU, Bahrain Defence Force Hospital, Riffa, Kingdom of Bahrain
2 Department of Critical Care Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia

Correspondence Address:
Khadija Hamed
Department of ICU, Bahrain Defence Force Hospital, Riffa
Kingdom of Bahrain
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/sccj.sccj_15_17

Rights and Permissions

Introduction and Background: The incidence of Acinetobacter infections has steadily increased and now has become a major threat with the emergence of its multidrug-resistant strains. Acinetobacter is notorious for their ability to spread among hospitalized patients. This study attempts to identify the intensive care unit (ICU) variables predictive of Acinetobacter sepsis. Methods: In this case–control study, we extracted data from a prospectively collected ICU database on all patients admitted with a diagnosis of sepsis from 2010 to 2015. Data identifying all Acinetobacter isolates were obtained from the section of microbiology database. Patients with Acinetobacter sepsis were compared with control patients. Approval was obtained from the Institutional Research Ethics Committee. Results: Four hundred and thirty-one patients were studied and 43 (9.9%) developed Acinetobacter sepsis. Mean APACHE II score was 26 ± 7.7; median procalcitonin level was 3.9 (interquartile range [IQR] 1.1, 18.4). Mean age was 52.5 ± 21.4 years with median ICU length of stay 6 (IQR 4, 43) days. ICU mortality was 23% (99 patients) with mortality rate of patients with Acinetobacter sepsis at 60.5% (26 patients of 43). Patients who developed Acinetobacter sepsis had a mean SOFA score 14.1 ± 3.7 with 46.5% in septic shock, 9% organ donors, and 7% postsolid organ transplant. The most common site of isolation was the respiratory tract, 34.6%, followed by bloodstream/line sepsis, 30.8%; 32.5% had a single site infected. Median duration on mechanical ventilation was 15.3 (IQR 7, 15.3) days. On univariate regression analysis, multidrug-resistant Acinetobacter sepsis was predicted by vasopressor use, odds ratio (OR) 4.1 (95% confidence interval [CI] 1.6, 9.9, P = 0.002), bloodstream infection, OR 6.3 (95% CI 3.2, 12.4, P < 0.001), single site of initial sepsis, OR 0.4 (95% CI 0.2, 0.9, P = 0.02), APACHE II score, OR 1.05 (95% CI 1.01, 1.1, P = 0.01), malignancy, OR 6 (95% CI 2.2, 15.7, P < 0.001), and appropriate empiric antibiotics, OR 0.04 (95% CI 0.01, 0.15, P < 0.001). On multivariate regression, appropriate empiric antibiotics, OR 0.04 (95% CI 0.01, 0.13, P < 0.001), vasopressor use, OR 3.1 (95% CI 1.07, 9.2, P = 0.03), bloodstream infection, OR 7.5 (95% CI 3.2, 17.4, P < 0.001), and single site of initial sepsis, OR 0.1 (95% CI 0.07, 0.4, P < 0.001) remained significant predictors of Acinetobacter sepsis. Conclusions: Acinetobacter sepsis remains a frequent and hazardous ICU acquisition with a higher risk imposed by continued vasoplegia and septicemia and protective effects from appropriate initial antibiotic coverage and limited sites involved. This study attempts to identify ICU variables predictive of Acinetobacter sepsis.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded2    
    Comments [Add]    

Recommend this journal